Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/244
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSau, Apurba K-
dc.date.accessioned2014-11-27T09:52:41Z-
dc.date.available2014-11-27T09:52:41Z-
dc.date.issued2012-07-
dc.identifier.urihttp://hdl.handle.net/123456789/244-
dc.description.abstractInterferon-c induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37uC but GDP became significant when the hydrolysis reaction was carried out at 15uC. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1.en_US
dc.publisherPlosen_US
dc.titleInsight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1en_US
dc.contributor.coauthorRani, Anjana-
dc.contributor.coauthorPandita, Esha-
dc.contributor.coauthorRahman, Safikur-
dc.contributor.coauthorShashank Deep-
dc.journalPLos Oneen_US
dc.volumeno7en_US
dc.issueno7en_US
dc.pagese40487en_US
Appears in Collections:Immumo Endocrinology, Publications

Files in This Item:
File Description SizeFormat 
article 2.pdf510.29 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.