Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/885
Title: | PE_PGRS30 of Mycobacterium tuberculosis mediates suppression of proinflammatory immune response in macrophages through its PGRS and PE domains |
Authors: | Garg, Lalit C Chatrath, Shweta Gupta, Vineet Kumar Dixit, Aparna |
Issue Date: | Sep-2016 |
Publisher: | Institut Pasteur. Published by Elsevier Masson SAS |
Abstract: | The success of Mycobacterium tuberculosis as a pathogen relies on its ability to survive inside macrophages and evade host immune mechanisms. M. tuberculosis employs multiple strategies to confer resistance against immune system including inhibition of phago-lysosomal fusion, modulation of cytokine responses and granuloma formation. PE_PGRS proteins, uniquely present in pathogenic mycobacteria, are cell surface molecules that are suggested to interact with host cells. PE_PGRS proteins have also been implicated in its pathogenesis. In the present study, immuno-regulatory property of Rv1651c-encoded PE_PGRS30 protein was explored. Infection of PMA-differentiated human THP-1 macrophages with Mycobacterium smegmatis harbouring pVV(1651c) resulted in reduced production of IL-12, TNF-α and IL-6, as compared to infection with M. smegmatis harbouring the control plasmid pVV16. No differential effect was observed on bacterial persistence inside macrophages or on macrophage mortality upon infection with the two recombinant strains. Infection of THP-1 macrophages with recombinant M. smegmatis expressing deletion variants of PE_PGRS30 indicated that anti-inflammatory function of the protein is possessed by its PGRS and PE domains while the C-terminal domain, when expressed alone, displayed antagonistic effect in terms of TNF-α secretion. These results suggest that PE_PGRS30 interferes with macrophage immune functions important for activation of adaptive T-cell responses. |
URI: | http://hdl.handle.net/123456789/885 |
Appears in Collections: | Gene Regulation, Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
16 s2.0-S1286457916300454-main.pdf | Research article | 838.41 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.